Search results for " Detector modelling and simulations"
showing 2 items of 2 documents
Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment
2014
XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
2010
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV…